

Video / Audio Interfaces for TV and DVD Recorders

NTSC-PAL Audio I/O Interface for Recording

BD3823FV

Description

BD3823FV is a low-noise (3.2µVrms), low distortion (0.0015%), 5ch selector, incorporating a resistor-ladder type

Because of a wide power supply voltage range (7V to 14.5V), BD3823FV can meet a wide input voltage (to 4.5 Vms), and high S/N can be achieved. In addition, the built-in volume does not add any distortion ratio characteristics, even when the attenution is varied, and is applicable for high-quality audio systems.

Features

- 1) A resistor-ladder type volume circuit is with a low distortion ratio (0.0015% with volume set to -6dB) and low noise (3.2 µVrms with volume set to -6dB).
- 2) By grouping sound input terminals with output terminals, the PCB layout is reduced.
- 3) Small package SSOP B20 achieves good crosstalk characteristicss (-110 dB).
- 4) The use of Bi-CMOS process enables low current consumption and energy saving design. Because of low current consumption, BD3823FV has the advantage in quality over the scaling down of the internal regulators and heat controls.

Applications

DVD recorders

Absolute maximum rating (Ta=25°C)

	,		
Parameter	Symbol	Limits	Unit
Applied Voltage	VCC	15.0	V
Applied Voltage	SCL, SDA	7.0	V
Input voltage	Vin	VCC+0.3~GND-0.3	V
Power Dissipation	Pd	810 ^{*1}	mW
Operating Temperature	Topr	-40~+85 *2	°C
Storage Temperature	Tastg	-55~+150	°C

^{*1} Reduced by 6.5 mW/°C at 25°C or higher.

Thermal resistance θ ia = 154 (°C/W), when Rohm standard board is mounted.

Rohm standard board: Size: $70 \times 70 \times 1.6 \text{ (mm}^3\text{)}$

Material: FR4 glass-epoxy substrate (copper foil area: not more than 3%).

*2 As long as voltage stays within operating voltage range, certain circuit operation is guaranteed in the operating temperature range.

Allowable power loss conditions are related to temperature, to which care must be taken. In addition though the standard value of its electrical characteristics cannot be guaranteed under the conditions other than those specified, basic functions are maintained.

•Operating range (Basic operation at Ta=25°C)

Parameter	Symbol	Min.	Тур.	Max.	Unit
Power supply voltage *3	VCC	7.0	12.0	14.5	V

^{*3} As long as temperature and operating voltage meet specifications

In addition, though the standard value of its electrical characteristics cannot be guaranteed under the conditions other than those specified, basic functions are maintained.

•Electrical characteristics

Unless otherwise specified, Ta=25°C, VCC=12V, f=1kHz, Vin=1Vrms, Rg= $600\,\Omega$, RL= $10k\,\Omega$, Gain selector = 0dB, Volume = 0dB, Input terminal = Front 1, Output terminal = Out 1

	Development	Cymah al		Limits		l læit	Conditions
	Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions
	Circuit Current upon no signal	IQ	-	2.5	10	mA	V _{IN} =0Vrms
	Voltage gain	G _V	-1.5	0	1.5	dВ	G _V =20log(V _{OUT} /V _{IN})
	Maximum output voltage	V _{OM}	3.0	3.6	ı	Vrms	V _{OM} at THD(V _{OUT})=1% BW=400Hz-30KHz。
	Channel balance	СВ	-1.5	0	1.5	dB	$CB = G_{V1}-G_{V2}$ $G_{V1}:ch1Gain, G_{V2}:ch2 Gain$
	Total harmonic distortion	THD	-	0.0015	0.05	%	V _{IN} =2Vrms,Volume=-6dB BW=400Hz-30KHz
GENERAL	Output noise voltage *	V _{NO}	-	3.2	16	μVrms	Volume=-6dB $R_g = 0\Omega$, BW=IHF-A
GEN	Residual output noise voltage *	V _{NOR}	-	2	10	μVrms	Volume = $-\infty dB$ R _g = 0Ω , BW=IHF-A
	Cross-talk between channels *	СТС	-	-110	-80	dB	$R_g = 0\Omega$ BW = IHF-A
	Input impedance	R _{IN}	77	110	143	kΩ	1pin-10pin terminal
	Maximum input voltage	V _{IM}	3.1	3.6 ¹⁾	-	Vrms	V _{IM} at THD(V _{OUT})=1% BW=400Hz-30KHz 1pin-10pin terminal
	Cross-talk between selectors *	CTS	-	-110	-80	dB	$R_g = 0\Omega$ BW = IHF-A $CTS=20log(V_{OUT}/V_{IN})$
	Volume control range	Vv	-32.5	-30.5	-28.5	dB	$GV=20log(V_{OUT}/V_{IN})$ BW = IHF-A
VOLUME	Maximum attenuation *	G _{V MIN}	-	-106	-85	dB	Volume = $-\infty$ dB GV=20log(V _{OUT} /V _{IN}) BW = IHF-A
0/	Step resolution	G _{V STEP}	-	0.5	-	dB	Volume=0~-30.5dB
	Attenuation set error	G _{V ERR}	-1.5	0	1.5	dB	Volume=0~-30.5dB
ECTOR	Maximum gain	G _{MAX}	4.5	6	7.5	dB	Gain Selector=6dB V _{IN} =500mVrms G=20log(V _{OUT} /V _{IN})
GAIN SELECTOR	Step resolution	G _{STEP}	-	2	-	dB	From 2dB to 4dB
GAI	Gain set error	G _{ERR}	-1.5	0	1.5	dB	

^{*} VP-9690A (average value detection, effective value display) filter by Matsushita Communication is used for * measurement.

^{*} Phase between input/output is the same.

^{*}This IC is not designed to be radiation-resistant.

¹⁾V $_{IM}$ =2.5Vrms(TYP) at VCC=9V、THD(V $_{OUT}$)=1% V $_{IN}$ =4.2Vrms(TYP) at VCC=14V、THD(V $_{OUT}$)=1%

Timing chart

Electrical specifications and timing of bus lines and I/O stages

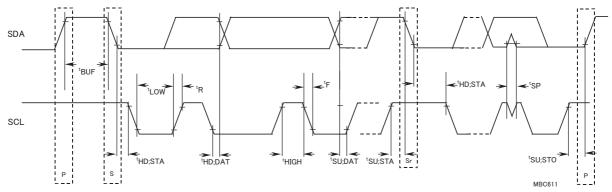


Fig.1 Timing Definition on I²C BUS

Table 1. Characteristics of the SDA and SCL BUS lines for I²C BUS devices

	Parameter	Symbol	High spe I ² C E		Unit
			Min.	Max.	
1	SCL clock frequency	fscl	0	400	kHz
2	Bus free time between a STOP and START condition	tBUF	1.3	-	μs
3	Hold time (repeated) START condition. After this period, the first clock pulse is generated	thd;sta	0.6	-	μs
4	LOW period of the SCL clock	tLOW	1.3	-	μs
5	HIGH period of the SCL clock	thigh	0.6	-	μs
6	Set-up time for a repeated START condition	tsu;sta	0.6	-	μs
7	Data hold time	thd;dat	0*	-	μs
8	Data set-up time	tsu; dat	100	-	ns
9	Rise time of both SDA and SCL signals	tr	20+Cb	300	ns
10	Fall time of both SDA and SCL signals	tF	20+Cb	300	ns
11	Set-up time for STOP condition	tsu;sto	0.6	-	μs
12	Capacitive load for each bus line	Cb	-	400	pF

The above numerical values all correspond to VIH min and VIL max levels (see Table 2).

Table 2. Characteristics of the SDA and SCL I/O stages for I²C BUS devices

	Parameter	Symbol	High spec		Unit
			Min.	Max.	
13	Low-level input voltage : fixed input levels	VIL	-0.5	1.0	V
14	Low-level input voltage : fixed input levels	VIH	2.3	-	μs
15	Hysteresis of Schmitt trigger inputs: fixed input levels	Vhys	n/a	n/a	V
16	Pulse width of spikes which must be suppressed by the input filter.	tsp	0	50	ns
17	Low-level output voltage (open drain): at 3mA sink current	VOL1	0	0.4	V
18	Output fall time from VIHmin. to VIHmax. with a bus capacitance from 10 pF to 400pF: with up to 3mA sink current at VOL1	tor	20+0.1Cb	250	ns
19	Input current each I/O pin with an input voltage between 0.4V and 0.9 VCCmax.	li	-10	10	μΑ
20	Capacitance for each I/O pin	Ci	-	10	pF

n/a = not applicable

^{*}The input signals must internally provide at least 300 ns hold-time for SDA signals (at VIH min of SCL signals) in order to cross over undefined region at the fall-end of SCL.

I²C BUS FORMAT

	MSB	L	SB	MSB	LSB		MSB	LSB		
	S	Slave A	Address	А	Select Address		Α	Data	Α	Р
•	1bit	8bit	1bit		8bit	1bi	t	8bit	1bit	1bit

S = Start condition (Recognition of start bit)

Slave Address = Recognition of slave address. 7 bits in upper order are voluntary.

Least significant bit is "L" for writing.

A = ACKNOWLEDGE bit (Recognition of acknowledgement)

Select Address = Selection of volume, etc.

Data = Data such as volume, etc.

P = Stop condition (Recognition of stop bit)

I²C BUS Interface Protocol

1) Basic form

S	Slave A	ddress	Α	Sel	ect Address	Α	D	ata	Α	Р
N	1SB	LSB	MS	SB	LSB	MS	SB	LSB		

2) Automatic increment (Select Address increases (+1) according to the number of data.)

S	Slave Address	A	Select A	Address	Α	Data1	Α	Data2	Α	• • • •	DataN	Α	Р
	MSB L	SB	MSB	LSB	MSB	LSB	MSB	LSB	MSB	LSB			

- (例) [1] Data 1 shall be set as data of address specified by Select Address.
 - [2] Data 2 shall be set as data of address specified by Select Address +1.
 - [3] Data N shall be set as data of address specified by Select Address +N-1.

Slave Address

Because the slave address can be changed by the SELECT setting, it is possible to use two chips simultaneously on a single control BUS .

	MSB							LSB
SELECTvoltage condition	A6	A5	A4	A3	A2	A1	A0	R/W
GND ∼ 0.2×VCC	1	0	0	0	0	0	0	0
0.8×VCC ~ VCC	1	0	0	0	0	1	0	0

Set the SELECT voltage within the condition defined.

Data format

	Select	MSB	MSB Data								
Items to be set	Address (HEX)	D7	D6	D5	D5 D4 D3 D2 D1						
Input Selector	00	*	*	*	*	*	Ir	nput Selecto	or		
Volume ch1	01	*	*		,	Volume atte	nuation ch	1			
Volume ch2	02	*	*	Volume attenuation ch2							
Gain Selector	03	*	*	* * * Gain Selector					elector		

^{*}Don't care

•Application circuit diagram

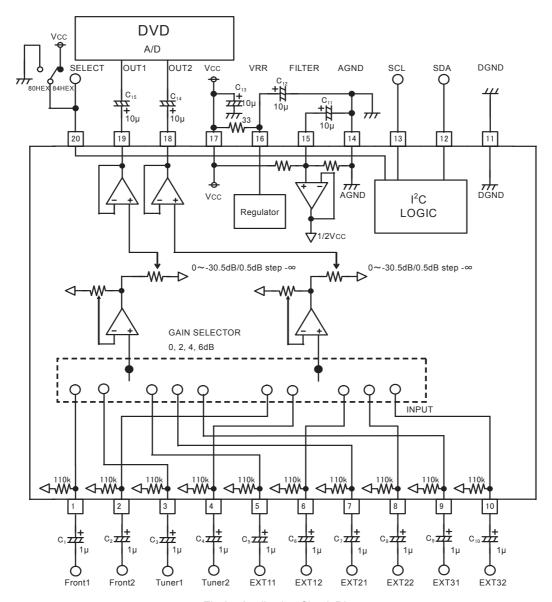


Fig.2 Application Circuit Diagram

Pin No.	Pin Name	Pin Description	Pin No.	Pin Name	Pin Description
1	Front1	Front 1ch input terminal	11	DGND	Ground ternial
2	Front2	Front 2ch input terminal	12	SDA	I ² C communication data terminal
3	Tuner1	Tuner 1 ch input	13	SCL	I ² C communication clock terminal
4	Tuner2	Tuner 2 ch input	14	AGND	Ground terminal
5	EXT11	External 1 1ch input terminal	15	FILTER	1/2Vcc terminal
6	EXT12	External 1 2ch input terminal	16	VRR	Ripple filter terminal
7	EXT21	External 2 1ch input terminal	17	Vcc	Power supply terminal
8	EXT22	External 2 2ch input terminal	18	OUT2	Volume 2ch output terminal
9	EXT31	External 3 1ch input terminal	19	OUT1	Volume 1ch output terminal
10	EXT32	External 3 2ch input terminal	20	SELECT	Slave address selection terminal

Reference data

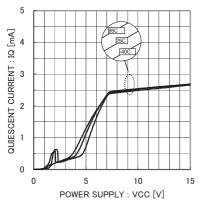


Fig.3 Quiescent Current vs. Power Supply

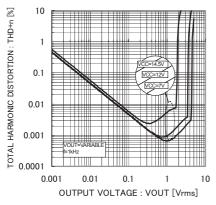


Fig.6 Total harmonic distortion vs. Output voltage

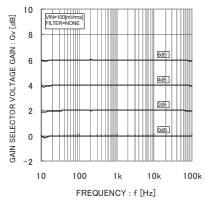


Fig.9 Gain selector voltage gain vs. Frequency

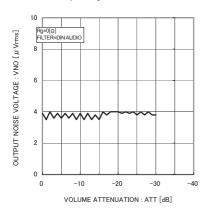


Fig.12 Volume attenuation vs. voltage attenuation

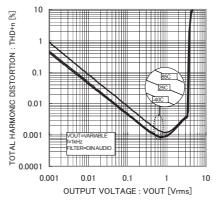


Fig.4 Total harmonic distortion vs. Output Voltage



Fig.7 Total harmonic distortion vs. Frequency



Fig.10 Volume attenuation vs. Frequency

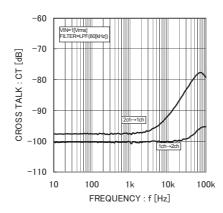


Fig.13 Cross Talk vs. Frequency

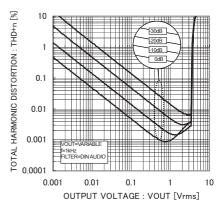


Fig.5 Total harmonic distortion vs. Output voltage

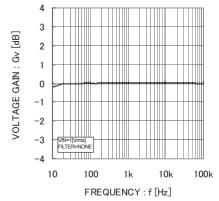


Fig.8 Voltage gain vs. Frequency

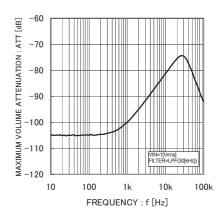


Fig.11 Maximum volume attenuation vs. Frequency

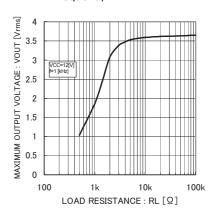
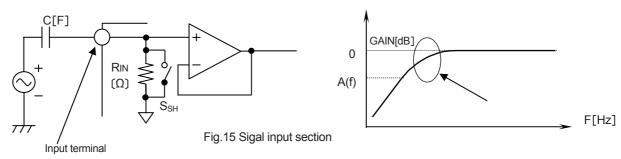


Fig.14 Maximum output voltage vs. Load resistance

How to select application parts

Initial condition when power supply (17 pin) is turned ON

A circuit that carries out initialization in IC, when power supply (17 pin) is turned ON is incorporated. Settings are as shown in the following table. However, it is recommended to transmit the data to all the addresses as initial data when power is turned ON, and to apply mute while the initial data is input


to apply mate willo the initial ac	ata io iripat					
Parameter	Symbol		Limits		Unit	Conditions
Farameter	Symbol	Min.	Тур.	Max.	Offic	Conditions
VCC rise time	Trise	20	-	-	μS	VCC rise time from 0V to 3V
VCC voltage when power on reset is released.	Vpor	-	2.6	-	٧	

Function	Initial Condition
Input Selector	Input MUTE
Volume	-∞dB
Gain SERECTOR	0dB

Signal input section

1) Setting for input coupling capacitor

In the signal input terminal, set the constant for the input coupling capacitor C(F), taking the input impedance R_{IN} (Ω) inside into account. This makes up the primary HPF characteristics of the RC.

2) SHORT mode of input

SHORT mode is a command to reduce resistance by setting impedance RIN to switch S_{SH} =ON. When SHORT command is not chosen, switch S_{SH} is turned OFF. By using this command, it is possible to stop charging externally mounted coupling capacitor C. Use SHORT mode when there is no signal since the SHORT mode turns ON the S_{SH} switch in order to achieve low impedance.

Operation Notes

- 1. Numbers and data in entries are representative design values and are not guaranteed values of the items.
- Although ROHM is confident that the example application circuit reflects the best possible recommendations, be sure to verify
 circuit characteristics for your particular application. Modification of constants for other externally connected circuits may cause
 variations in both static and transient characteristics for external components as well as this Rohm IC. Allow for sufficient
 margins when determining circuit constants.

3. Absolute maximum ratings

Use of the IC in excess of absolute maximum ratings, such as the applied voltage or operating temperature range (Topr), may result in IC damage. Assumptions should not be made regarding the state of the IC (short mode or open mode) when such damage is suffered. A physical safety measure, such as a fuse, should be implemented when using the IC at times where the absolute maximum ratings may be exceeded.

4. GND potential

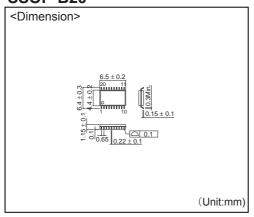
Ensure a minimum GND pin potential in all operating conditions. Make sure that no pins are at a voltage below the GND at any time, regardless of whether it is a transient signal or not.

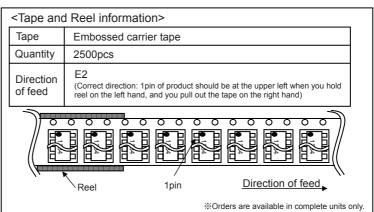
5. Thermal design

Perform thermal design, in which there are adequate margins, by taking into account the permissible dissipation (Pd) in actual states of use.

6. Short circuit between terminals and erroneous mounting

Pay attention to the assembly direction of the ICs. Wrong mounting direction or shorts between terminals, GND, or other components on the circuits, can damage the IC.


7. Operation in strong electromagnetic field


Using the ICs in a strong electromagnetic field can cause operation malfunction.

Selection of order type

SSOP-B20

- The contents described herein are correct as of October, 2005
- The contents described herein are subject to change without notice. For updates of the latest information, please contact and confirm with ROHM CO.,LTD.
- Any part of this application note must not be duplicated or copied without our permission.
 Application circuit diagrams and circuit constants contained herein are shown as examples of standard use and operation. Please pay careful attention to the peripheral conditions when designing circuits and deciding upon circuit constants in the set.
- Any data, including, but not limited to application circuit diagrams and information, described herein are intended only as illustrations of such devices and not as the specifications for such devices. ROHM CO.,LTD. disclaims any warranty that any use of such devices shall be free from infringement of any third party's intellectual property rights or other proprietary rights, and further, assumes no liability of whatsoever nature in the event of any such infringement, or arising from or connected with or related to the use of such devices.
- Upon the sale of any such devices, other than for buyer's right to use such devices itself, resell or otherwise dispose of the same, implied right or license to practice or commercially exploit any intellectual property rights or other proprietary rights owned or controlled by ROHM CO., LTD. is granted to any such buyer.
- The products described herein utilize silicon as the main mate
- The products described herein are not designed to be X ray proof.

The products listed in this catalog are designed to be used with ordinary electronic equipment or devices (such as audio visual equipment, office-automation equipment, communications devices, electrical appliances and electronic toys).

Should you intend to use these products with equipment or devices which require an extremely high level of reliability and the malfunction of which would directly endanger human life (such as medical instruments, transportation equipment, aerospace machinery, nuclear-reactor controllers, fuel controllers and other safety devices), please be sure to consult with our sales representative in advance.

Excellence in Electronics

ROHM CO., LTD.

21, Saiin Mizosaki-cho, Ukyo-ku, Kyoto 615-8585, Japan TEL: (075)311-2121 FAX: (075)315-0172 URL http://www.rohm.com

Published by Application Engineering Group Contact us for further information about the products.

Contact us for further information about the Atlanta U.S.A. /ROHM ELECTRONICS ATLANTA SALES OFFICE (DINISION OF ROHM ELE. U.S.A., ALC) TEL: +1(770)754-6972 FAX: +1(770)754-6991 Dallas U.S.A. /ROHM ELECTRONICS DALLAS SALES OFFICE (DINISION OF ROHM ELE. U.S.A., LLC) TEL: +1(972)312-881 FAX: +1(973)312-0330 San Diego U.S.A. /ROHM ELECTRONICS SAN DIEGO SALES OFFICE (DINISION OF ROHM ELE. U.S.A., LLC) TEL: +1(858)625-3630 FAX: +1(858)625-3670 TEL: +4(9(2154)9210 FAX: +4(9(2154)921400 United Kingdom / ROHM ELECTRONICS GMBH (UK) TEL: +44(9(1908-235788 France /ROHM ELECTRONICS GMBH (UK) TEL: +44(9(1908-235780 FAX: +44(9(1908-235788 France /ROHM ELECTRONICS GMBH (UK) TEL: +43(9(1908-23670 FAX: +44(9(1908-235788 France /ROHM ELECTRONICS GMBH (UK) TEL: +43(9(1908-236788 France /ROHM ELECTRONICS (HA) (C.), LTD. TEL: +852(2)/406262 FAX: +852(2)/375-8971 Shanghal China / ROHM ELECTRONICS (SHANGHAI) CO., LTD. TEL: +80(2)/9279-272 FAX: +86(2)/927-42066 Dallan China / ROHM ELECTRONICS (TRADING (OALIAN) CO., LTD. TEL: +80(4)/9279-272 FAX: +86(2)/9247-2066

Notes

- No technical content pages of this document may be reproduced in any form or transmitted by any
 means without prior permission of ROHM CO.,LTD.
- The contents described herein are subject to change without notice. The specifications for the
 product described in this document are for reference only. Upon actual use, therefore, please request
 that specifications to be separately delivered.
- Application circuit diagrams and circuit constants contained herein are shown as examples of standard
 use and operation. Please pay careful attention to the peripheral conditions when designing circuits
 and deciding upon circuit constants in the set.
- Any data, including, but not limited to application circuit diagrams information, described herein are intended only as illustrations of such devices and not as the specifications for such devices. ROHM CO.,LTD. disclaims any warranty that any use of such devices shall be free from infringement of any third party's intellectual property rights or other proprietary rights, and further, assumes no liability of whatsoever nature in the event of any such infringement, or arising from or connected with or related to the use of such devices.
- Upon the sale of any such devices, other than for buyer's right to use such devices itself, resell or
 otherwise dispose of the same, no express or implied right or license to practice or commercially
 exploit any intellectual property rights or other proprietary rights owned or controlled by
- ROHM CO., LTD. is granted to any such buyer.
- Products listed in this document are no antiradiation design.

The products listed in this document are designed to be used with ordinary electronic equipment or devices (such as audio visual equipment, office-automation equipment, communications devices, electrical appliances and electronic toys).

Should you intend to use these products with equipment or devices which require an extremely high level of reliability and the malfunction of which would directly endanger human life (such as medical instruments, transportation equipment, aerospace machinery, nuclear-reactor controllers, fuel controllers and other safety devices), please be sure to consult with our sales representative in advance.

It is our top priority to supply products with the utmost quality and reliability. However, there is always a chance of failure due to unexpected factors. Therefore, please take into account the derating characteristics and allow for sufficient safety features, such as extra margin, anti-flammability, and fail-safe measures when designing in order to prevent possible accidents that may result in bodily harm or fire caused by component failure. ROHM cannot be held responsible for any damages arising from the use of the products under conditions out of the range of the specifications or due to non-compliance with the NOTES specified in this catalog.

Thank you for your accessing to ROHM product informations.

More detail product informations and catalogs are available, please contact your nearest sales office.

ROHM Customer Support System

THE AMERICAS / EUROPE / ASIA / JAPAN

www.rohm.com

Contact us : webmaster@rohm.co.jp

Copyright © 2008 ROHM CO.,LTD.

ROHM CO., LTD. 21 Saiin Mizosaki-cho, Ukyo-ku, Kyoto 615-8585, Japan

pan TEL:+81-75-311-2121 FAX:+81-75-315-0172

