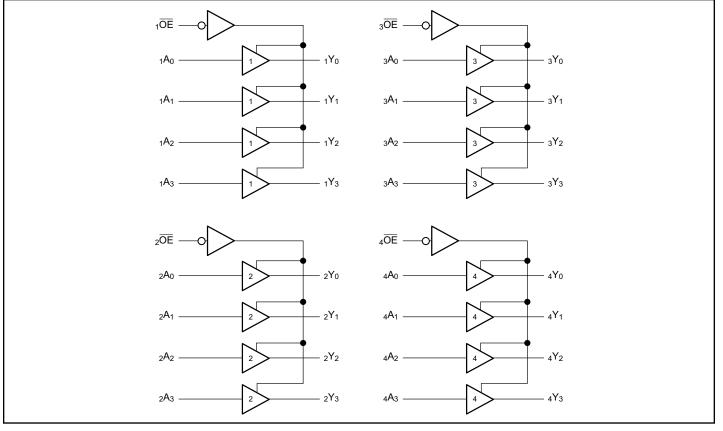
Obsolete – Part Discontinued

PI74LPT16244

3.3V, 16-Bit Buffer/Line Driver

Features


- · Compatible with LCX and LVT families of products
- Supports 5V Tolerant Mixed Signal Mode Operation
 - Input can be 3V or 5V
 - Output can be 3V or connected to 5V bus
- Advanced Low Power CMOS Operation
- Excellent output drive capability:
 - Balanced drives (24mA sink and source)
- · Pin compatible with industry standard double-density pinouts
- Low ground bounce outputs
- Hysteresis on all inputs
- Industrial operating temperature range: -40°C to +85°C
- Multiple center pins and distributed Vcc/GND pins minimize switching noise
- Packaging (Pb-free & Green):
 48-pin 240-mil wide thin plastic TSSOP (A)

Description

Pericom Semiconductor's PI74LPT16244 is a 16-bit buffer/line driver designed for driving high capacitive memory loads. With its balanced-drive characteristics, this high-speed, low power device provides lower ground bounce, transmission line matching of signals, fewer line reflections and lower EMI and RFI effects. This makes it ideal for driving on-board buses and transmission lines. This device is designed with three-state controls to operate in a Quad-Nibble, Dual-Byte, or a single 16-bit word mode.

The PI74LPT16244 can be driven from either 3.3V or 5.0V devices allowing this device to be used as a translator in a mixed 3.3/5.0V system.

Block Diagram

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature55°C to +125°C
Ambient Temperature with Power Applied40°C to +85°C
Supply Voltage to Ground Potential (Inputs & V_{CC} Only)–0.5V to +7.0V
Supply Voltage to Ground Potential (Outputs & D/O Only)0.5V to +7.0V
DC Input Voltage0.5V to +7.0V
DC Output Current
Power Dissipation 1.0W

Stresses greater than those listed under MAXIMUM RAT-INGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

Product Pin Configuration

10E	1	48 20E
1Y0 🗖	2	47 🗖 1A0
1Y1 🗖	3	46 🗖 1A1
GND 🗖	4	45 🗖 GND
1Y2 🗖	5	44 🗖 1A2
1Y3 🗖	6	43 🗖 1A3
Acc 🗖	7	42 🗖 VCC
2Y0 🗖	8	41 🗖 2A0
2Y1 🗖	9	40 🗖 2A1
GND 🗖	10	39 🗖 GND
2Y2 🗖	11	38 🗖 2A2
2Y3 🗖	12	37 🗖 2A3
3Y0 🗖	13	36 🗖 3A0
3Y1 🗖	14	35 🗖 3A1
GND 🗖	15	34 🗖 GND
3Y2 🗖	16	33 🗖 3A2
3Y3 🗖	17	32 🗖 3A3
	18	
4Y0 🗖	19	30 🗖 4A0
4Y1 🗖	20	29 🗖 4A1
GND 🗖	21	28 🗖 GND
4Y2 🗖	22	27 🗖 4A2
4Y3 🗖	23	26 4A3
40E 🗖	24	25 30E

Truth Table

Note:

Inpu	Inputs ⁽¹⁾		
xOE	xAx	xYx	
L	L	L	
L	Н	Н	
Н	Х	Z	

Notes:

1. H = High Voltage Level, X = Don't Care,

L = Low Voltage Level, Z = High Impedance

Product Pin Description

Pin Name	Description
xOE	3-State Output Enable Inputs (Active LOW)
xAx	Inputs
xYx	3-State Outputs
GND	Ground
V _{CC}	Power

Capacitance ($T_A = 25^{\circ}C$, f = 1 MHz)

Parameters ⁽¹⁾	Description	Test Conditions	Тур	Max.	Units
C _{IN}	Input Capacitance	$V_{IN} = 0V$	3	6	тĒ
C _{OUT}	Output Capacitance	$V_{OUT} = 0V$	3	8	pF

Notes:

1. This parameter is determined by device characterization but is not production tested.

Parameters	Description	Test Conditions ⁽¹⁾		Min.	Typ ⁽²⁾	Max.	Units
V	Input HIGH Voltage (Input pins)	Guaranteed Logic HIGH Level		2.2		5.5	
V _{IH}	Input HIGH Voltage (I/O pins)	Guaranteed Logic HIC	JH Level	2.0		5.5	v
V _{IL}	Input LOW Voltage	Guaranteed Logic LO	WI aval	-0.5		0.8	ľ
V IL	(Input and I/O pins)		W Level	-0.5		0.8	
I _{IH}	Input HIGH Current (Input pins)	Vcc = Max.	$V_{IN} = 5.5V$			± 1	
лЩ	Input HIGH Current (I/O pins)	Vcc = Max.	$V_{IN} = V_{CC}$			±1	
I	Input LOW Current (Input pins)	Vcc = Max.	$V_{IN} = GND$			±1	μA
I _{IL}	Input LOW Current (I/O pins)	Vcc = Max.	$V_{IN} = GND$			±1	
I _{OZH}	High Impedance Output Current	Vcc = Max.	$V_{OUT} = 5.5 V$			±1	
I _{OZL}	(3-State Output pins)	Vcc = Max. Vout = GND				±1	
V _{IK}	Clamp Diode Voltage	$V_{CC} = Min., I_{IN} = -18 \text{ mA}$			-0.7	-1.2	V
I _{OHD}	Output HIGH Current	$V_{CC} = 3.3V$, $V_{IN} = V_{IH}$ or V_{IL} , $V_{O} = 1.5V^{(3)}$		-36	-60	-110	
I _{ODL}	Output LOW Current	$V_{CC} = 3.3V, V_{IN} = V_{IH} \text{ or } V_{IL}, V_O = 1.5V^{(3)}$		50	90	200	mA
		Vcc = Min.	$I_{OH} = -0.1 \text{ mA}$	Vcc-0.2			
V	Output IIICII Valta aa	$V_{IN} = V_{IH} \text{ or } V_{IL}$	IOH = -3 mA	2.4	3.0		
V _{OH}	Output HIGH Voltage	$V_{CC} = 3.0 V_{2}$	Iон = -8 mA	2.4 ⁽⁵⁾	3.0		
		$V_{IN} = V_{IH} \text{ or } V_{IL}$	Iон = -24 mA	2.0			V
	Output LOW Voltage Vcc = Min.	N N	IOL = 0.1 mA			0.2	1
V _{OL}			IOL = 16 mA		0.2	0.4	
		$V_{IN} = V_{IH} \text{ or } V_{IL}$	IOL = 24 mA		0.3	0.5	
I _{OS}	Short Circuit Current ⁽⁴⁾	$V_{CC} = Max.^{(3)}, V_{OUT} =$	= GND	-60	-85	-240	mA
I _{OFF}	Power Down Disable	$V_{CC} = 0V$, VIN or $V_{OUT} \le 4.5V$				±100	μA

DC Electrical Characteristics (Over the Operating Range, $TA = -40^{\circ}C$ to $+85^{\circ}C$, VCC = 2.7V to 3.6V)

Notes:

1. For Max. or Min. conditions, use appropriate value specified under Electrical Characteristics for the applicable device type.

2. Typical values are at Vcc = 3.3V, $+25^{\circ}C$ ambient and maximum loading.

3. Not more than one output should be shorted at one time. Duration of the test should not exceed one second.

4. This parameter is guaranteed but not tested.

5. $V_{OH} = V_{CC} - 0.6V$ at rated current.

Power Supply Characteristics

Parameters	Description	Test Co	nditions ⁽¹⁾	Min.	Typ ⁽²⁾	Max.	Units
Icc	Quiescent Power Supply Current	Vcc = Max.	$V_{IN} = GND \text{ or } V_{CC}$		0.1	10	
ΔΙcc	Quiescent Power Supply Current TTL Inputs HIGH	Vcc = Max.	$V_{IN} = V_{CC} - 0.6 V^{(3)}$			500	μΑ
Ісср	Dynamic Power Supply ⁽⁴⁾	Vcc = Max., Outputs Open $x\overline{OE} = GND$ One Bit Toggling 50% Duty Cycle	$V_{IN} = V_{CC}$ $V_{IN} = GND$		50	75	μA/ MHz
I	Total Power Supply	Vcc = Max., Outputs Open fi = 10 MHz 50% Duty Cycle \overline{xOE} = GND One Bit Toggling	$V_{IN} = V_{CC} - 0.6V$ $V_{IN} = GND$		0.5	0.8	
Ic	Total Power Supply Current ⁽⁶⁾	Vcc = Max., Outputs Open fi = 2.5 MHz 50% Duty Cycle $\overline{xOE} = GND$ 16 Bits Toggling	$V_{IN} = V_{CC} - 0.6V$ $V_{IN} = GND$		2.0	3.3 ⁽⁵⁾	mA

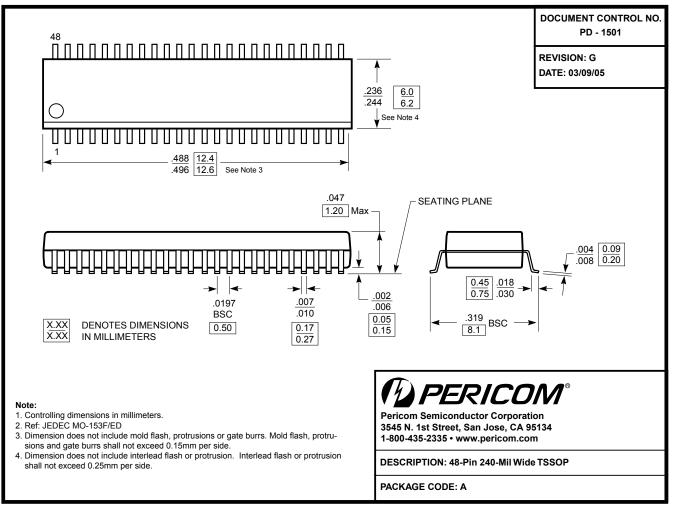
Notes:

- 1. For Max. or Min. conditions, use appropriate value specified under Electrical Characteristics for the applicable device.
- 2. Typical values are at Vcc = 3.3V, $+25^{\circ}C$ ambient.
- 3. Per TTL driven input; all other inputs at Vcc or GND.
- 4. This parameter is not directly testable, but is derived for use in Total Power Supply Calculations.
- 5. Values for these conditions are examples of the Icc formula. These limits are guaranteed but not tested.
- 6. IC =IQUIESCENT + INPUTS + IDYNAMIC
 - $IC = ICC + \Delta ICC DHNT + ICCD (fCP/2 + fiNI)$
 - Icc = Quiescent Current (IccL, IccH and Iccz)
 - Δ Icc = Power Supply Current for a TTL High Input
 - D_H = Duty Cycle for TTL Inputs High
 - NT = Number of TTL Inputs at DH
 - ICCD = Dynamic Current Caused by an Input Transition Pair (HLH or LHL)
 - fcp = Clock Frequency for Register Devices (Zero for Non-Register Devices)
 - NCP = Number of Clock Inputs at fCP
 - fi = Input Frequency
 - NI = Number of Inputs at fi
 - All currents are in milliamps and all frequencies are in megahertz.

Switching Characteristics over Operating Range⁽¹⁾

			LPT	16244	LPT1	6244A	LPT1	6244C	
Parameters	Description	Conditions	Co	om.	Co	om.	Co	m.	Units
			Min ⁽²⁾	Max.	Min ⁽²⁾	Max.	Min ⁽²⁾	Max.	
t _{PLH} t _{PHL}	Propagation Delay xAx to xYx		1.5	5.2	1.5	4.8	1.5	4.1	
t _{PZH} t _{PZL}	Output Enable Time xOE to xYx	$C_{L} = 50 \text{ pF}$ $R_{L} = 500\Omega$	1.5	7.0	1.5	6.2	1.5	5.8	ns
t _{PHZ} t _{PLZ}	Output Disable Time ⁽³⁾ xOE to xYx		1.5	7.0	1.5	5.6	1.5	5.2	
t _{SK} (o)	Output Skew ⁽⁴⁾			0.5		0.5		0.5	

Notes:


1. Propagation Delays and Enable/Disable times are with $Vcc = 3.3V \pm 0.3V$, normal range. For Vcc = 2.7V, extended range, all Propagation Delays and Enable/Disable times should be degraded by 20%.

2. Minimum limits are guaranteed but not tested on Propagation Delays.

3. This parameter is guaranteed but not production tested.

4. Skew between any two outputs, of the same package, switching in the same direction. This parameter is guaranteed by design.

Packaging Mechanical: 48-pin TSSOP (A)

Ordering Information

Ordering Code	Package Code	Description
PI74LPT16244AE	А	Pb-free & Green, 48-pin 240 mil wide plastic TSSOP
PI74LPT16244AAE	А	Pb-free & Green, 48-pin 240 mil wide plastic TSSOP
PI74LPT16244CAE	A	Pb-free & Green, 48-pin 240 mil wide plastic TSSOP

Notes:

• Thermal characteristics can be found on the company web site at www.pericom.com/packaging/

• E = Pb-free & Green

• Adding an X suffix = Tape/Reel

Pericom Semiconductor Corporation • 1-800-435-2336 • www.pericom.com