

SN54LVTH16241 . . . WD PACKAGE

FEATURES

- Members of the Texas Instruments Widebus™ Family
- State-of-the-Art Advanced BiCMOS Technology (ABT) Design for 3.3-V Operation and Low Static-Power Dissipation
- Support Mixed-Mode Signal Operation (5-V Input and Output Voltages With 3.3-V V_{CC})
- Support Unregulated Battery Operation Down to 2.7 V
- Typical V_{OLP} (Output Ground Bounce) <0.8 V at $V_{CC} = 3.3 \text{ V}, T_A = 25^{\circ}\text{C}$
- I_{off} and Power-Up 3-State Support Hot Insertion
- Bus Hold on Data Inputs Eliminates the Need for External Pullup/Pulldown Resistors
- Distributed V_{CC} and GND Pin Configuration **Minimizes High-Speed Switching Noise**
- Flow-Through Architecture Optimizes PCB Layout
- Latch-Up Performance Exceeds 500 mA Per JESD 17
- ESD Protection Exceeds 2000 V Per MIL-STD-883, Method 3015; Exceeds 200 V Using Machine Model (C = 200 pF, R = 0)
- Package Options Include Plastic Shrink Small-Outline (DL) and Thin Shrink Small-Outline (DGG) Packages and 380-mil Fine-Pitch Ceramic Flat (WD) Package Using 25-mil Center-to-Center Spacings

DESCRIPTION/ORDERING INFORMATION

These 16-bit buffers/drivers are designed specifically for low-voltage (3.3-V) V_{CC} operation, but with the capability to provide a TTL interface to a 5-V system environment.

The devices can be used as four 4-bit buffers, two 8-bit buffers, or one 16-bit buffer. The devices provide noninverting outputs and complementary output-enable (OE and \overline{OE}) inputs.

ORDERING INFORMATION

T _A	PACK	AGE ⁽¹⁾	ORDERABLE PART NUMBER	TOP-SIDE MARKING
ss		Deal of 1000	74LVTH16241DLRG4	
		Reel of 1000	SN74LVTH16241DLR	
	550P - DL	Tube of OF	SN74LVTH16241DL	LV1H16241
-40°C to 85°C		Tube of 25	SN74LVTH16241DLG4	
	TOCOD DOO	Deal of 2000	74LVTH16241DGGRE4	
	1330P - DGG	Reel OI 2000	SN74LVTH16241DGGR	

(1) Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. Widebus is a trademark of Texas Instruments.

SN74LVTH16241	DG	G OR DL PACKAGE
	(TOP VI	EW)
1 <u>0</u>		48]20E
1Y1	2	47] 1A1
1Y2 [3	46] 1A2
GND [4	45] GND
1Y3 [5	44] 1A3
1Y4 [6	43] 1A4
V _{cc} [7	42] V _{cc}
2Y1	8	41] 2A1
2Y2 [9	40] 2A2
GND [10	39] GND
2Y3 [11	38] 2A3
2Y4 [12	37] 2A4
3Y1	13	36] 3A1
3Y2 [14	35] 3A2
GND [15	34] GND
3Y3 [16	33] 3A3
3Y4 [17	32] 3A4
V _{cc} [18	31] V _{cc}
4Y1[19	30] 4A1
4Y2 [20	29] 4A2
GND [21	28] GND
4Y3 [22	27] 4A3
4Y4 [23	26] 4A4
4 <u>0</u>	24	25 3OE

SCBS693D-MAY 1997-REVISED NOVEMBER 2006

DESCRIPTION/ORDERING INFORMATION (CONTINUED)

When V_{CC} is between 0 and 1.5 V, the devices are in the high-impedance state during power up or power down. However, to ensure the high-impedance state above 1.5 V, \overline{OE} should be tied to V_{CC} through a pullup resistor and OE should be tied to GND through a pulldown resistor; the minimum value of the resistor is determined by the current-sinking/current-sourcing capability of the driver.

Active bus-hold circuitry is provided to hold unused or floating data inputs at a valid logic level.

These devices are fully specified for hot-insertion applications using I_{off} and power-up 3-state. The I_{off} circuitry disables the outputs, preventing damaging current backflow through the devices when they are powered down. The power-up 3-state circuitry places the outputs in the high-impedance state during power up and power down, which prevents driver conflict.

The SN54LVTH16241 is characterized for operation over the full military temperature range of -55°C to 125°C. The SN74LVTH16241 is characterized for operation from -40°C to 85°C.

INPU	INPUTS						
1 <u>0E</u> , 4 <u>0E</u>	1 0E , 4 0E 1A, 4A						
L	Н	Н					
L	L	L					
Н	Х	Z					

FUNCTION TABLES

INPU	JTS	OUTPUTS
20E, 30E	2Y, 3Y	
Н	Н	Н
Н	L	L
L	Х	Z

10E	1	EN1			
20F	48	EN2			
20E	25	EN2			
30E	24				
40E	L	EN4			
	47		-		2
A1	46		1	1 V	3
AZ	44				5
A3	43				6
A4	41	 	4	0 77	8
A1	40		1	2 ∨	9
A2	38				11
A3	37				12
A4	36	 			13
A1	35		1	3 ∨	14
A2	33	 			16
A3	32	 			17
A4	30				10
A1			1	4 ▽	13
A2	23				20
A3	27				22
A4	26	<u> </u>			23
-					

A. This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

SN54LVTH16241, SN74LVTH16241 3.3-V ABT 16-BIT BUFFERS/DRIVERS WITH 3-STATE OUTPUTS SCBS693D-MAY 1997-REVISED NOVEMBER 2006

LOGIC DIAGRAM (POSITIVE LOGIC)

SCBS693D-MAY 1997-REVISED NOVEMBER 2006

Absolute Maximum Ratings⁽¹⁾

over operating free-air temperature range (unless otherwise noted)

			MIN	MAX	UNIT
V_{CC}	Supply voltage range		-0.5	4.6	V
VI	Input voltage range ⁽²⁾		-0.5	7	V
Vo	Voltage range applied to any output in the high-i	-0.5	7	V	
Vo	Voltage range applied to any output in the high s	state ⁽²⁾	-0.5	V _{CC} + 0.5	V
	Current into any output in the law state	SN54LVTH16241		96	
1 ₀	Current into any output in the low state	SN74LVTH16241		128	IIIA
	Ourseast into any output in the bight state (3)	SN54LVTH16241		48	0
1 ₀	Current into any output in the high state	SN74LVTH16241		64	mA
I _{IK}	Input clamp current	V ₁ < 0		-50	mA
I _{OK}	Output clamp current	V _O < 0		-50	mA
0	De clue de theorem el intro e de de ce (4)	DGG package		89	0000
θ _{JA}	Package thermal impedance (*)	DL package		94	°C/W
T _{stg}	Storage temperature range		-65	150	°C

(1) Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed. (3) This current flows only when the output is in the high state and $V_O > V_{CC}$. (4) The package thermal impedance is calculated in accordance with JESD 51.

Recommended Operating Conditions⁽¹⁾

			SN54LVTH1	6241 ⁽²⁾	SN74LVTH	116241	
			MIN	MAX	MIN	MAX	UNIT
V _{CC}	Supply voltage		2.7	3.6	2.7	3.6	V
V _{IH}	High-level input voltage		2		2		V
V _{IL}	Low-level input voltage			0.8		0.8	V
VI	Input voltage			5.5		5.5	V
I _{OH}	High-level output current			-24		-32	mA
I _{OL}	Low-level output current			48		64	mA
$\Delta t / \Delta v$	Input transition rise or fall rate	Outputs enabled		10		10	ns/V
$\Delta t / \Delta V_{CC}$	Power-up ramp rate		200		200		μs/V
T _A	Operating free-air temperature		-55	125	-40	85	°C

All unused control inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

Product Preview (2)

SCBS693D-MAY 1997-REVISED NOVEMBER 2006

Electrical Characteristics

over recemmended operating free-air temperature range (unless otherwise noted)

PARAMETER TEST CONDIT			SN54L	VTH1624	1 (1)	SN74L	VTH1624	1		
PA	RAMEIER	TEST CO	DNDITIONS	MIN	TYP ⁽²⁾	MAX	MIN	TYP ⁽²⁾	MAX	UNII
V _{IK}		V _{CC} = 2.7 V,	I _I = -18 mA			-1.2			-1.2	V
		$V_{CC} = 2.7 \text{ V to } 3.6 \text{ V},$	I _{OH} = −100 μA	V _{CC} - 0.2			$V_{CC} - 0.2$			
		V _{CC} = 2.7 V,	I _{OH} = -8 mA	2.4			2.4			V
∨он		V 2V	I _{OH} = -24 mA	2						V
		$V_{CC} = 3 V$	I _{OH} = -32 mA				2			
		V 07V	I _{OL} = 100 μA			0.2			0.2	
		$v_{\rm CC} = 2.7 v$	I _{OL} = 24 mA			0.5			0.5	
\ <i>\</i>			I _{OL} = 16 mA			0.4			0.4	V
VOL		$\lambda = 2 \lambda$	I _{OL} = 32 mA			0.5			0.5	v
		$v_{CC} = 3 v$	I _{OL} = 48 mA			0.55				
			I _{OL} = 64 mA						0.55	
		V _{CC} = 0 or 3.6 V,	V _I = 5.5 V			10			10	
l,	Control inputs	V _{CC} = 3.6 V,	$V_{I} = V_{CC}$ or GND			±1			±1	μA
	Data innuta	N 26.V	$V_{I} = V_{CC}$			1			1	•
	Data Inputs	$V_{CC} = 3.6 V$	$V_{I} = 0$			-5			-5	
I _{off}		$V_{CC} = 0,$	$V_{I} \text{ or } V_{O} = 0 \text{ to } 4.5 \text{ V}$			±100			±100	μΑ
		V 2.V	V _I = 0.8 V	75			75			
La in	Data inputs	$V_{CC} = 3 V$	V _I = 2 V	-75			-75			ıιΔ
"I(noia)	Data inputo	$V_{CC} = 3.6 V^{(3)},$	$V_{1} = 0$ to 3.6 V						500 -750	μ
I _{OZH}		V _{CC} = 3.6 V,	$V_0 = 3 V$			5			5	μΑ
I _{OZL}		V _{CC} = 3.6 V,	V _O = 0.5 V			-5			-5	μΑ
I _{OZPU}		$V_{CC} = 0$ to 1.5 V, $V_{O} = OE/OE = don't care$	= 0.5 V to 3 V,			±100 ⁽⁴⁾			±100	μΑ
I _{OZPD}		$V_{CC} = 1.5 V \text{ to } 0, V_O = OE/OE = don't care$	= 0.5 V to 3 V,			±100 ⁽⁴⁾			±100	μΑ
		$V_{cc} = 3.6 V_{c}$	Outputs high			0.19			0.19	
I _{CC}		$I_0 = 0,$	Outputs low			5			5	mA
		$V_{I} = V_{CC}$ or GND	Outputs disabled			0.19			0.19	
$\Delta I_{CC}^{(5)}$		V_{CC} = 3 V to 3.6 V, Or Other inputs at V _{CC} or	ne input at V _{CC} – 0.6 V, GND			0.2			0.2	mA
Ci		V _I = 3 V or 0			4			4		pF

 C_{o}

 $V_0 = 3 V \text{ or } 0$

 Product Preview
All typical values are at V_{CC} = 3.3 V, T_A = 25°C.
This is the bus-hold maximum dynamic current. It is the minimum overdrive current required to switch the input from one state to another.

9

9

pF

(4) On products compliant to MIL-PRF-38535, this parameter is not production tested.

(5) This is the increase in supply current for each input that is at the specified TTL voltage level, rather than V_{CC} or GND.

SCBS693D-MAY 1997-REVISED NOVEMBER 2006

Switching Characteristics

over recommended operating free-air temperature range, $C_L = 50 \text{ pF}$ (unless otherwise noted) (see Figure 1)

DADAMETED	FROM	то	SI	SN54LVTH16241 ⁽¹⁾				SN74L	VTH16	241		
PARAMETER	(INPUT)	(OUTPUT)	MIN	MAX	MIN	MAX	MIN	TYP ⁽²⁾	MAX	MIN N	ΛAΧ	UNIT
t _{PLH}	^	v	1.1	3.7		4	1.2	2.6	3.5		3.8	50
t _{PHL}	A	T	1.1	3.7		4	1.2	2.2	3.5		3.8	115
t _{PZH}		v	1.1	4.7		5.3	1.2	3.2	4.5		5.1	20
t _{PZL}	OE OF OE	T	1.1	4.7		5.2	1.2	3.2	4.5		4.9	115
t _{PHZ}		v	1.9	5.5		6.1	2	3.7	5.3		5.9	20
t _{PLZ}	OE OF OE	T	1.9	5.2		5.7	2	3.4	4.9		5.4	115
t _{sk(LH)}									0.5		0.5	20
t _{sk(HL)}									0.5		0.5	115

(1) Product Preview (2) All typical values are at V_{CC} = 3.3 V, T_A = 25^{\circ}C.

SCBS693D-MAY 1997-REVISED NOVEMBER 2006

PARAMETER MEASUREMENT INFORMATION

NOTES: A. C_L includes probe and jig capacitance.

B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.

C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_0 = 50 \Omega$, $t_r \leq 2.5 ns$, $t_f \leq 2.5 ns$.

D. The outputs are measured one at a time, with one transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms

10-Jun-2014

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package	Pins	Package	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)	(6)	(3)		(4/5)	
SN74LVTH16241DGGR	ACTIVE	TSSOP	DGG	48	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	LVTH16241	Samples
SN74LVTH16241DL	ACTIVE	SSOP	DL	48	25	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	LVTH16241	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free (RoHS Exempt):** This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between

the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

⁽⁵⁾ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

⁽⁶⁾ Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

PACKAGE OPTION ADDENDUM

10-Jun-2014

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PACKAGE MATERIALS INFORMATION

www.ti.com

Texas Instruments

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal												
Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN74LVTH16241DGGR	TSSOP	DGG	48	2000	330.0	24.4	8.6	13.0	1.8	12.0	24.0	Q1

TEXAS INSTRUMENTS

www.ti.com

PACKAGE MATERIALS INFORMATION

11-Mar-2017

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN74LVTH16241DGGR	TSSOP	DGG	48	2000	367.0	367.0	45.0

DL (R-PDSO-G48)

PLASTIC SMALL-OUTLINE PACKAGE

- A. All linear dimensions are in inches (millimeters).B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).
- D. Falls within JEDEC MO-118

PowerPAD is a trademark of Texas Instruments.

MECHANICAL DATA

MTSS003D - JANUARY 1995 - REVISED JANUARY 1998

DGG (R-PDSO-G**)

PLASTIC SMALL-OUTLINE PACKAGE

48 PINS SHOWN

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold protrusion not to exceed 0,15.
- D. Falls within JEDEC MO-153

IMPORTANT NOTICE FOR TI DESIGN INFORMATION AND RESOURCES

Texas Instruments Incorporated ('TI") technical, application or other design advice, services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, "TI Resources") are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using any particular TI Resource in any way, you (individually or, if you are acting on behalf of a company, your company) agree to use it solely for this purpose and subject to the terms of this Notice.

TI's provision of TI Resources does not expand or otherwise alter TI's applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources.

You understand and agree that you remain responsible for using your independent analysis, evaluation and judgment in designing your applications and that you have full and exclusive responsibility to assure the safety of your applications and compliance of your applications (and of all TI products used in or for your applications) with all applicable regulations, laws and other applicable requirements. You represent that, with respect to your applications, you have all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. You agree that prior to using or distributing any applications. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

You are authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI RESOURCES ARE PROVIDED "AS IS" AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING TI RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY YOU AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

You agree to fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of your noncompliance with the terms and provisions of this Notice.

This Notice applies to TI Resources. Additional terms apply to the use and purchase of certain types of materials, TI products and services. These include; without limitation, TI's standard terms for semiconductor products http://www.ti.com/sc/docs/stdterms.htm), evaluation modules, and samples (http://www.ti.com/sc/docs/stdterms.htm), evaluation

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2017, Texas Instruments Incorporated